Advertisment ACS-IndiaSymposium
 
Journal of Pharmaceutical Negative Results
  Print this page Email this page Small font sizeDefault font sizeIncrease font size 
Search Article 
  
Advanced search 
 Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts  
 
ORIGINAL ARTICLE
Year : 2011  |  Volume : 2  |  Issue : 1  |  Page : 24-27

EDTA decreases in vitro transcorneal permeation of fluconazole in phosphate buffer through excised sheep cornea


1 Gurukul College of Pharmacy, Suratgarh, Rajasthan, India
2 Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India

Correspondence Address:
Sunil Thakral
5-M-24, Jawahar Nagar, Sri Ganganagar, Rajasthan
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9234.82986

Rights and Permissions

Introduction: According to the World Health Organization, corneal diseases are a major cause of vision loss and blindness, second only to cataract in overall importance. Fungal keratitis is a major blinding eye disease in Asia. In epithelia, calcium has been implicated in the maintenance of intercellular matrix and therefore may be a key factor determining the size of potential paracellular routes for drug transport. Although the effects of chelating agents such as EDTA on the permeability of inorganic and organic solutes have been well documented in other epithelia, as well as the corneal endothelium, no definitive studies examining the effects of these compounds upon corneal epithelia have been reported. Materials and Methods: The corneal permeation studies were conducted using freshly excised sheep cornea, mounted between donor and receptor chambers of an all glass-modified Franz diffusion cell, containing 11 ml of ringer bicarbonate (pH 7.4, 34 o±1 o C). At the end of the experiment, each cornea (freed from sclera) was weighed, soaked in 1 ml of methanol, dried overnight at 90΀C and reweighed. From the difference in weights corneal hydration was calculated Results: Fluconazole ophthalmic solutions (0.2% w/v, pH 6.0) containing EDTA shows significant difference in P app 1.51×10 6 (cm/s) as compared to fluconazole ophthalmic solutions (0.2% w/v, pH 6.0) without EDTA showing 2.37×10 6 (cm/s). Conclusions: Use of ethylene diamine tetraacetate as chelating agent in fluconazole ophthalmic solutions significantly decreased the corneal permeability of fluconazole.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3914    
    Printed224    
    Emailed0    
    PDF Downloaded342    
    Comments [Add]    

Recommend this journal