Advertisment ACS-IndiaSymposium
Journal of Pharmaceutical Negative Results
  Print this page Email this page Small font sizeDefault font sizeIncrease font size 
Search Article 
Advanced search 
 Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts  
Year : 2012  |  Volume : 3  |  Issue : 1  |  Page : 49-53

Unsuitability of pharmacopoeial dissolution conditions for entacapone: Effects of various dissolution parameters on dissolution profile

Department of Pharmaceutics, SVKM'S, NMIMS University, School of Pharmacy and Technology Management, Dhule, Maharashtra, India

Correspondence Address:
T A Premchandani
Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S NMIMS University, Shirpur, District Dhule, Maharashtra State, 425 405
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0976-9234.99667

Rights and Permissions

Purpose: Entacapone, a catechol-O-methyltransferase inhibitor, is poorly water soluble (BCS class IV). The dissolution profile of pure Entacapone is improved in the presence of an alkaline buffer and after addition of a surfactant by facilitating the drug release process at the solid/liquid interface. Rationale: According to USP the best dissolution medium for Entacapone is phosphate buffer 5.8 in type II paddle-type apparatus with a paddle speed of 50 rpm. Materials and Methods: In this article an effect of various parameters (buffer, surfactant, and RPM) on the dissolution profile of Entacapone is studied by applying factorial design 33 (phosphate buffer- 5.3, 5.8, and 6.8; sodium lauryl sulfate- 0.5%, 1.0%, and 1.5%; rotation speed of paddle- 50, 75, and 100). Pure Entacapone pellets were formed using a hydraulic press. Conclusion: The release profile data revealed that the dissolution profile of Entacapone is remarkably improved in the alkaline medium (6.8), addition of surfactant does not affect the release profile, whereas increasing RPM of the paddle reduces the dissolution profile; hence it can be stated that Entacapone dissolution is pH dependent, showing maximum dissolution and pH 6.8 which is contradictory to the conditions specified in USP 2010.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded492    
    Comments [Add]    

Recommend this journal