Advertisment ACS-IndiaSymposium
 
Journal of Pharmaceutical Negative Results
  Print this page Email this page Small font sizeDefault font sizeIncrease font size 
Search Article 
  
Advanced search 
 Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts  
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 1  |  Page : 33-36

Insignificant anticonvulsant activity of Padina tetrastromatica (Brown macroalgae) in mice


1 Department of Pharmacology, Gurunanak College of Pharmacy, Nagpur, Maharashtra, India
2 Clinical Research Consultant, Nagpur, Maharashtra, India

Correspondence Address:
Subhash R Yende
Department of Pharmacology, Gurunanak College of Pharmacy, Nagpur, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-9234.177061

Rights and Permissions

Introduction: Marine macroalgae or seaweeds are found in the coastal region have created a promising significance in the biomedical area, mainly because of their contents of bioactive substances. The objective of the present study was to investigate the anticonvulsant activity of chloroform and ethanol extracts of Padina tetrastromatica (PT), a marine macroalgae (brown algae) in mice. Materials and Methods: The anticonvulsant activity of chloroform and ethanol extracts of PT was studied at 400 and 600 mg/kg, against maximal electroshock (MES) and pentylenetetrazole (PTZ) induced convulsion in mice. The duration of tonic hind limb extension (THLE), latency to onset of clonic convulsions and percent protection was noted in MES and PTZ tests, respectively. Phenytoin (25 mg/kg) and phenobarbitone (20 mg/kg) served as reference standards. Results: The chloroform extract of PT at 600 mg/kg significantly decreased the duration of THLE, while ethanol extract did not alter the duration of THLE in MES model. Further, chloroform and ethanol extracts of PT was found to be ineffective as an anticonvulsant when assessed by PTZ-induced convulsive model, as compared to their respective vehicle-treated groups. Conclusion: From the results of the present study it can be concluded that the chloroform extract of PT at 600 mg/kg showed significant anticonvulsant activity, while other extracts lack anticonvulsant activity in MES and PTZ model. However, further studies are required using different animal models to support these findings.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1629    
    Printed12    
    Emailed0    
    PDF Downloaded83    
    Comments [Add]    

Recommend this journal