Advertisment ACS-IndiaSymposium
 
Journal of Pharmaceutical Negative Results
  Print this page Email this page Small font sizeDefault font sizeIncrease font size 
Search Article 
  
Advanced search 
 Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts  
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 1  |  Page : 21-24

Optimization of scaffolds for localized drug delivery: An In vitro study


1 Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
2 Department of Pharmaceutical Sciences and Research, Dr. D.Y. Patil College of Pharmacy, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
3 Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India

Correspondence Address:
Archana A Gupta
Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune - 411 041, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpnr.JPNR_22_18

Rights and Permissions

Background: In oncology, major surgical interventions are often followed by an interim period of 3–6 months allowing the patient to recover, following which conventional radiotherapy and chemotherapy are initiated. Lack of therapeutic interventions in the interim period allows proliferation of the residual tumor cells. Thus, introducing a treatment modality in the interim period which inhibits tumor cells without exuberating the postsurgical morbidity is the need of the hour. The objective of the study is to fabricate biodegradable cross-linked scaffolds incorporated with an anticancer drug and optimization of scaffolds for drug release. Materials and Methods: Qualitative and quantitative characterization of the drug was done with the help of high-performance liquid chromatography (HPLC) and ultraviolet (UV) analysis. Three-dimensional (3D) discs of biodegradable scaffolds were prepared with anticancer drugs in aqueous solution in different concentrations along with crosslinkers. Discs were studied for their release kinetics with the help of HPLC. Results: HPLC analysis of the 3D-discs revealed negative results. There was no sign of cisplatin absorbance after the scaffold immersion in the solution. The results were attributed to the rapid degradation of the drug. Conclusions: Although scaffold-mediated local chemotherapy holds a great potential to replace conventional chemotherapy as a postsurgical treatment modality, several practical limitations need to be addressed. Modification in the research methodology including a shorter time for preparing the scaffold and freeze-drying the scaffold material using lyophilization instead of normal drying could prevent degradation of the drug.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed93    
    Printed10    
    Emailed0    
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal