A Review Paper on Dimensionality Reduction Techniques

Faizan Riyaz Mulla1, Dr. Anil Kumar Gupta2
1Department of Computer Science Engineering, AISSMS College of Engineering, Pune, India. E-mail: faizanmulla2000@gmail.com
2Centre for Development of Advanced Computing (C-DAC) Pune, India. E-mail: akgupta5592@gmail.com

Abstract

Dimensionality Reduction (DR) is the process of reducing the numerous features or random variables under consideration to a limited number of features by obtaining a set of principal variables. These techniques cater great values in machine learning, which come in handy to simplify a classification or a regression dataset, thereby yielding a better-performing predictive model. Techniques used for DR include Feature Selection methods, Matrix Factorization, AutoEncoder methods, and Manifold Learning. Merits of DR include data compression, reduced space of storage, and removal of redundant features. This paper attempts to review various techniques used to carry out dimensionality reduction while providing an exhaustive comparative study over the merits and demerits of each of the techniques used under the empirical experiments performed by the authors whose work is being reviewed.

Keywords: Dimensionality Reduction (DR), PCA, DP-PCA, ICA, SVD, LDA, Feature Selection, Feature Extraction, Autoencoders, Isomap, Umap, t-SNE, k-PCA, and Factor Analysis.

DOI: 10.47750/pnr.2022.13.S03.198

INTRODUCTION

Concerning data science, DR has a long history dealing with how it was developed over a while in combination with the various techniques involving data interpretation and data visualization—catering to primary purposes of removal of noise in data and compressing and transforming complex dimensional space data into simpler dimensional space while maintaining the meaningful properties of prototypical data.

The DR techniques reviewed include:
1. Principal Component Analysis (PCA)
2. Distributed Parallel-PCA (DP-PCA)
3. Linear Discriminant Analysis (LDA)
4. Independent Component Analysis (ICA)
5. Singular Value Decomposition (SVD)
6. Feature Selection (FS)
7. Feature Extraction (FE)
8. Autoencoders (AE)
9. Isometric Mapping (ISOMAP)
10. Kernel PCA (k-PCA)
11. Uniform Manifold Approximation and Projection (UMAP)
12. T-SNE
13. Factor Analysis (FA)

While dealing with data of high dimensions, the unprocessed raw data is often scattered and thinly distributed, giving rise to “The Curse of high Dimensionality.” The DR techniques resolve this problem of high dimensionality and make the dataset computationally tractable. These techniques are primarily categorized under two types, namely linear and non-linear.

Some of the linear DR methods are PCA, Factor Analysis (FA), LDA, and Truncated SVD. While as other non-linear methods, also known as Manifold Learning, include Kernel PCA, t-SNE, MDS, and ISOMAP.

Fig. 1. Various linear and non-linear techniques are used in DR.
PRINCIPAL COMPONENT ANALYSIS (PCA)

A. BRIEF INTRODUCTION

PCA has been a popular and most commonly used linear DR technique. Karl Pearson earlier proposed it in the year 1901 [1]. While the method was introduced for non-random variables, it later extended to random variables [2].

B. WORKING PRINCIPLE

Its main working principle involves the decomposition of the eigenvalue of the covariance data matrix, \(M(XX^T) = MA\lambda^T \) [10]. Here the columns of matrix \(M \) are represented by eigenvectors, and the corresponding eigenvalues are present in \(\lambda \). Now the data is projected into subspace with top eigenvectors corresponding to the largest eigenvalue as follows:

\[
X^\text{PCA} = M_k^T X \quad [10]
\]

Where \(M_k \) contains top \(k \) eigenvectors.

The main idea is the mapping of features that are \(n \)-dimensional to \(k \) dimensions (\(k < n \)), which are new orthogonal features, namely principal components [3].

In this, we input the \(n \)-dimensional sample set \(X = (x^1, x^2, ..., x^m) \). After this, we centralize all the sample set \(x^{(i)} = \bar{x} - \frac{1}{m} \sum_{j=1}^{m} x^{(j)} \) [3]. Now using the matrix \(M \) which depicts the covariance and eigenvalue decomposition \(XX^T \), we are able to find the eigen-vectors (\(w_1, w_2, w_3, ..., w_k \)) which correspond to the \(k \)-significant eigenvalues and form the eigenvector matrix \(W \).

Finally, we convert the input data set \(x^{(i)} \) into a unique dataset given by \(z^{(i)} = W^T x^{(i)} \) [3] and receive the output sample set \(X' = (z^1, z^2, ..., z^m) \) [3].

C. MERITS AND DEMERITS OF THE TECHNIQUE

Emphasizing some of the merits of this technique is that this algorithm comes from the class of unsupervised machine learning, is quite effective in the removal of redundant features and noise as it does not consider the label category and maps that data which is collected towards the direction (bases) having significant variance [8]. Moreover, since the algorithm reduces the numerous features in the model, it overcomes the hurdle of data over-fitting. However, this also makes the model vulnerable to under-fitting if much of the variance in collected data gets suppressed.

Concerning the research conducted by C. Yumeng and F. Yinglan [9], a few of the shortcomings of this technique are that the reduction results are not good enough, are time-consuming, have high information loss, and yield mediocre prediction accuracy scores. They thus proposed an improved version of the PCA technique, which had its foundation relied on the entropy methods’ weight and called it EW-PCA.

DISTRIBUTED PARALLEL PCA (DP-PCA)

A. BRIEF INTRODUCTION

In a traditional PCA method, data normalization is required to be done before constructing a PCA because PCA is reactive to the relative scalability of various variables [4]. For example, concerning PCA, one would need to compute each process attribute’s mean and variance to normalize each process variable to zero means and unit variance. And as we are in a time where there is an ever increase in big data, it would not be feasible for us to perform computation over each attribute owing to its massive size, and hence there is an urge for parallel computing.

B. WORKING PRINCIPLE

Following the work provided by L. Wang [5], the paper uses a calculation of the “mean” method to achieve standardization of the unaltered dataset to be fed to the PCA. Then the paper improves the solving of the matrix of correlation coefficient for PCA, followed by designing a distributed parallel data dimensionality scheme for data reduction.

Here for an input data set represented by \(X = (x_1, x_2, x_3, ..., x_n) \), a mean dealing matrix \(M \) is created using:

\[
m_{ij} = \frac{x_{ij}}{\bar{x}}, \text{ where } \bar{x} = \left(\frac{\sum_{i=1}^{n} x_{ij}}{n} \right) \text{ and } i,j=1,2,..,d. \quad [5]
\]

\[
M = \begin{bmatrix}
m_1^1 & \cdots & m_1^d \\
\vdots & \ddots & \vdots \\
m_n^1 & \cdots & m_n^d
\end{bmatrix} \quad [5]
\]

Now constructing a square matrix \(G \) using,

\[
g_i = \sum_{k=1}^{n} m_k m_k^T \quad [5]
\]

\[
G = \begin{bmatrix}
g_1^1 & \cdots & g_1^d \\
\vdots & \ddots & \vdots \\
g_n^1 & \cdots & g_n^d
\end{bmatrix} \quad [5]
\]

Then calculating linear sum vector \(B \) and square sum vector \(F \) as:

\[
b_i = \sum_{k=1}^{n} x_{ik}, \quad f = \sum_{k=1}^{n} (x_{ik})^2 ;
\]

where \(B = [b_1, b_2, ..., b_d] \) and \(F = [f_1, f_2, ..., f_d] \) [6].

Using Pearson’s method to solve the coefficient of correlation ‘r.’

\[
r = \frac{\Sigma (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\Sigma (x_i - \bar{x})^2 \Sigma (y_i - \bar{y})^2}} \quad [7]
\]

The equation gets deduced to:

\[
r_i^j = \frac{n \cdot g_i^j \cdot b_j - b_i \cdot f_j}{\sqrt{(n \cdot f_i^j - (b_i)^2) \cdot (n \cdot f_j^j - (b_j)^2)}}
\]

Hence utilizing the above formula, we derive the correlation matrices for coefficient as \(R \)

\[
R = \begin{bmatrix}
r_1^1 & \cdots & r_1^d \\
\vdots & \ddots & \vdots \\
r_n^1 & \cdots & r_n^d
\end{bmatrix} \quad [5]
\]
Using R, we find the eigenvalues and eigenvectors and determine the first k-eigenvectors for constructing the matrix Q of projection. Finally, we map the original dataset on the matrix Q, which is required to get the dimensionally reduced dataset.

C. MERITS AND DEMERITS OF THE TECHNIQUE
According to Linlin [5], DP-PCA prevails over the fallibility of PCA as it has a much lesser computation time. DP-PCA also uses the “mean” method, which serves as the elimination of influence on dimensions and reflects the variation information of the unaltered data. DP-PCA is observed to refine the matrix of correlation coefficient and thus enhance the calculation speed. Linlin [5] advocates that DP-PCA achieves better DR and manifestly concludes that DP-PCA reduces processing time and is undoubtedly a better algorithm than PCA.

J. Zhu and Z. Ge [4], using the map-reduce platform, established in multiple blocks, successfully implemented DP-PCA to perform distributed and parallel computations.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Merits</th>
<th>Demerits</th>
<th>Author Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Popular technique and widely used[1]</td>
<td>Data Standardization before constructing PCA[5]</td>
<td>It seeks a transformation procedure orthogonally for extraction of the set of uncorrelated linear component- principal from the possibly correlated variables[4]</td>
</tr>
<tr>
<td></td>
<td>The method extends to non-random and random variables[2]</td>
<td>Responsive to the correlative scaling of various variables[4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overcomes data over-fitting</td>
<td>Lower Computational Speed[5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective Preprocessing step for data compression</td>
<td>Higher Processing Time[5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise Removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-PCA</td>
<td>Parallel and distributed execution[4]</td>
<td>None when compared against PCA</td>
<td>MapReduce platform is established over several blocks to perform distributed and parallel computing[4]</td>
</tr>
<tr>
<td></td>
<td>Lesser Information loss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LINEAR DISCRIMINANT ANALYSIS (LDA)
A. BRIEF INTRODUCTION
LDA has been a traditional linear learning algorithm. Fisher first proposed it in 1936 and was earlier known as “Fisher Linear Discriminant (FLD)" [11]. LDA was later adopted in artificial intelligence(AI) domains and recognition of patterns by Belhumeur in the year 1996.

B. WORKING PRINCIPLE
LDA belongs to the group of supervised learning algorithms. It attempts to detect a combination of attributes of two kinds of objects or events, linearly, to categorize and distinguish them [3]. For each given n-dimensional dataset \(X = (x^1, x^2, \ldots x^n) \) [3], it finds the corresponding expected value or a category label \(y_i \).

The working ideology of LDA is given under the definition “the variance inside a class is the smallest after projecting while as the variance between classes is the largest [12]“. The LDA classification methodology assumes that the sample data of each category conform to Gaussian distribution(GD), which is conducive to LDA projection [3]. On the arrival of a recent sample, we are able to project it and put the projected sample attribute into the GD density and the probability function of each category to calculate the probability that it belongs to this category. The prediction
category is the one that corresponds to the highest probability.

C. MERITS AND DEMERITS OF THE TECHNIQUE
The merits of this technique are that it always had a rich internal structure [13] and is able to use the probabilistic algorithm effectively for the model’s training. Also, LDA capable for performing DR, suitable for massive datasets. So the LDA can be utilized in many areas [15][16][17][18]. LDA is also capable of serving as a classification algorithm rather than being limited to a DR technique.[3]

The traditional LDA model is vulnerable to the singularity problem when dealing with high-dimensional and low sample size data [14]. Some limitations of LDA observed are that the classification accuracy of the LDA is witnessed to be unsatisfactory when used alone[13]. Hence, this technique is often combined with some other techniques like PCA and is utilized in a hybrid system to solve the issue of singularity and give optimum accuracy scores.

INDEPENDENT COMPONENT ANALYSIS (ICA)

A. BRIEF INTRODUCTION
ICA has received considerable attention due to its varied applications, from source-channel separation equalizer to recognition of speech and functional MRI [19]. In addition, its utilization in rectilinear analysis of mixtures for remote sensing images are also discovered [20][21][22][23].

B. WORKING PRINCIPLE
The fundamental ideology of this technique is that it assumes the data to be mixed up linearly with a set of sources that are independent and separate. To demix these signal sources under their independence that is statistically measured is done using mutual information [24]. The ICA aims at finding a demixing matrix V that separates the signal source vector s into a group of statistically independent sources [24]. Several different criteria have been coined to measure source independence [19]. Nevertheless, they all originated from mutual information for measuring the discrepancy between two unexpected sources [25].

C. MERITS AND DEMERITS OF THE TECHNIQUE
This technique has been a valuable supplement of the classical PCA. However, unlike the PCA, which attempts to decorrelate the components in a vector, ICA methods are aimed at making the components as independent as possible [23]. As a result, ICA innovations in remote sensing has become an evolving topic in recent years.

Even though PCA, alongside MNF, utilize the concept to rank-organize eigenvalues to their PCs, some limitations of ICA include no indistinguishable guide present for it to rank-organize ICA-generated ICs [24]. Therefore, J. Wang and C. Chang introduced three IC rank organization and selection criteria. Per these different requirements, three techniques, ICA-DR1, ICA-DR2, and ICA-DR3, pick out a group of most desirable ICs to carry out DR [24].

SINGULAR VALUE DECOMPOSITION (SVD)

A. BRIEF INTRODUCTION
SVD belongs to the class of supervised dimensionality methods [27]. The SVD classifies the data into linearly independent components for performing dimensionality reduction. In a paper, Y. Jaradat and colleagues [26] introduced SVD, an effective matrix breakdown methodology. SVD is the underlying computing engine of several approaches like PCA, eigendecomposition, matrix decomposition, Cholesky decomposition, etc.

B. WORKING PRINCIPLE
In SVD, the breaking down of the matrix dataset X is presented by \(X = U S V^T \) [10] and ‘U’ contains singular vectors on the left, ‘V’ contains singular vectors on the right side, and ‘S’ consists of the values that are singular. The altered data is then projected onto the spatially defined by k left singular vectors, which correspond to k-most significant singular values to get the DR results from data : \(X^{SVD} = U_k S V^T \) [10] ; Where \(U_k \) Contains the k left singular value.

C. MERITS AND DEMERITS OF THE TECHNIQUE
A few of the merits of SVD are that it is the most effective and widely used matrix factorization technique in computation [26]. SVD is considered the computational engine of many data-driven algorithms and applications. SVD is used in PCA, where high dimensional data is decomposed into lower-dimensional data’s statistically dominant patterns. SVD is more commonly used in clustering and classifications, signal processing, orthogonal decomposition, dynamic mode decomposition, etc.[26]

A. Winursito and R. Hidayat [27] compared the accuracies of SVD and PCA methods when they were used in a hybrid system combined with Mel Frequency Cepstral Coefficients (MFCC), a popular feature extraction method used in the recognition systems of speech.

<table>
<thead>
<tr>
<th>Table 2- Comparison PCA used with MFCC [27]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-dimensional data (PCA)</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3- Comparison SVD used with MFCC [27]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-dimensional data (SVD)</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
It is observed that SVD+MFCC gives a better accuracy score than PCA+MFCC for the given n-dimensional data range 10-14.

FEATURE SELECTION TECHNIQUES

A. **BRIEF INTRODUCTION**

Two primary goals of the FS technique are to detect self-explanatory features having high distinguishable robustness betwixt task-detecting (TD) classes and to minimize the feature vector’s dimensionality acquired from the feature extraction step [28]. This phase is proved vital due to the various benefits it provides, (i) minimizing computing difficulty, (ii) removing the issue of scalability, and (iii) enhancing the predictive accuracy of diagnosis.

Two main types of FS methods are discussed below:

1) Filter-Based FS.

2) Wrapper-Based FS.

B. **WORKING PRINCIPLE (FILTER-BASED FS)**

It mainly consists of three main stages: (i) Generation of the attribute set, (ii) measurement step, and (iii) testing by a learning algorithm [28]. It uses statistical tests taken to determine the group of attributes having the most significant predictive power. Fisher Criterion Score (F-Score) is considered to select the optimal features.

C. **MERITS AND DEMERITS OF THE TECHNIQUE (FILTER-BASED FS)**

Merits of using the filter-based FS approach is that the F-Score considered calculates the significance of each attribute autonomously of the other features by analogizing its association with the outcome feature [28].

A setback to be emphasized here is that the F-Score only inspects the distinguishable power of each attribute. It cannot detect the distinguishability of several attributes. Therefore, attributes having lesser score values will not be considered, even if they complement the top attributes and are relevant [28].

D. **WORKING PRINCIPLE (WRAPPER-BASED FS)**

Most of its working principle is the same as the filter-based FS technique. However, unlike the measurement phase in the filter-based FS approach, an algorithmic learning technique is utilized in the wrapper-based FS approach. Due to this learning algorithm, the wrappers help attain optimum FS outcomes in several cases [28].

E. **MERITS AND DEMERITS OF THE TECHNIQUE (WRAPPER-BASED FS)**

While using a learning algorithm in the wrapper-based FS approach, we find better accuracy scores when compared with the filter-based FS technique. However, on the other hand, the learning technique used here is the primary reason why wrappers perform slowly as compared to their filter-based counterpart techniques [28]. Hence it is observed here that the accuracy of the wrapper-based approach is coming at the cost of computation time of the learning technique.

Table 4- A Comparison of Feature Selection Techniques by A. M. Alhassan [29]

<table>
<thead>
<tr>
<th>FS techniques</th>
<th>Type</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher score</td>
<td>Filter</td>
<td>It measures the relevance of attribute subsets efficiently.</td>
<td>The dependency of one attribute over other attribute is not considered.</td>
</tr>
<tr>
<td>Correlation</td>
<td>Filter</td>
<td>A multivariate filtering technique prioritizes the attributes over the interrelational heuristic evaluation function.</td>
<td>Incapable of finding solid interactions.</td>
</tr>
<tr>
<td>Backward elimination</td>
<td>Wrapper</td>
<td>Effectively identifies the interdependencies among attribute subsets.</td>
<td>Classifiers execute several times to check the quality of attributes.</td>
</tr>
<tr>
<td>Sequential forward selection</td>
<td>Wrapper</td>
<td>Simple and avoids overfitting effectively.</td>
<td>The selected subsets are specific to the classifiers under consideration.</td>
</tr>
</tbody>
</table>

FEATURE EXTRACTION

A. **BRIEF INTRODUCTION**

Feature extraction transforms unaltered data into numerous attributes that can be processed, reserving the information in the unaltered dataset. The most preferred FE methods include Gradient attributes, structural attributes, regional attributes, projection histograms, Zernike moments, and zoning.[31]

B. **WORKING PRINCIPLE**

Unlike the FS techniques consisting of selecting a group of essential attributes while maintaining necessary information, in FE, transforming the unaltered group of attributes into a reduced group of attributes is carried out by maximizing
disjunctures between classes in the compressed data space [30].

C. MERITS AND DEMERITS OF THE TECHNIQUE
As existing FE methods have limitations related to time and accuracy, S. Ansari [31] presents a faster, more efficient, and optimized feature vector for handwriting recognition. These attributes combine structural attributes, regional attributes, and gradient attributes. Consequently, S. Ansari [31] claims that the extraction technique totals 91 attributes, which was the highest compared to the attributes generated from all other techniques.

AUTOENCODERS
A. BRIEF INTRODUCTION
In 2006, Hinton and Salakhutdinov [32] identified an approach from deep learning that applies to DR, utilizing neural nets that self-learn and predict from their input. These networks are known as autoencoders. It yields a non-linear DR that surpasses SVD-based techniques once trained.

B. WORKING PRINCIPLE
For an input \(x \) and the projection \(z \), the applied remodeling \(x' \), the AE is assembled using two networks:
An encoder is described by a function \(f(x) = z \) [33] for which \(x \) belongs to the input values; \(z \) is the network’s output. A decoder is given by a function \(g(z) = x' \) [33].
Here \(z \) is the input value while \(x' \) is the network’s output.
The training focuses on reducing the distance between the applied remodeling and its input.
\[
g(f(x)) = x'[33]\]
It is vital to create a threshold capacity for the AE model to resemble its incoming variables over its generated variables and withdraw the valuable properties.
The autoencoder is given training for both encoder and decoder. Still, when applied to DR, the decoder part is discarded, and the encoder’s output is treated as the data’s projection [33].

C. MERITS AND DEMERITS OF THE TECHNIQUE
Autoencoders utilizing neural net would require longer computation time and resources for training than the techniques based on SVD. It shows that neural nets are not worthy regarding applications having limited resources prototyping [33].
The neural networks resolve by settling for a miniature value of an objective function and between training. In contrast, SVD-based techniques like PCA are deterministic and exact.

Table 5- Comparative study of PCA vs. ISOMAP vs. AutoEncoders, accuracies obtained using DR techniques over a k-NN Classifier [33]

<table>
<thead>
<tr>
<th>Technique</th>
<th>Dataset</th>
<th>MNIST</th>
<th>Fashion</th>
<th>CIFAR-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>MNIST</td>
<td>97.46 ± 0.07</td>
<td>85.55 ± 0.04</td>
<td>42.34 ± 0.22</td>
</tr>
<tr>
<td>ISOMAP</td>
<td>MNIST</td>
<td>94.86 ± 0.15</td>
<td>81.16 ± 0.21</td>
<td>33.60 ± 0.51</td>
</tr>
<tr>
<td>DAE</td>
<td>MNIST</td>
<td>97.81 ± 0.07</td>
<td>87.61 ± 0.10</td>
<td>45.76 ± 0.36</td>
</tr>
</tbody>
</table>

ISOMETRIC MAPPING (ISOMAP)
A. BRIEF INTRODUCTION
ISOMAP was first introduced by Tenenbaum, V.de Silva [34] in 2000. Isomap is derived from multidimensional scaling (MDS) [57], which finds an embedding that is non-linear and keeps interpoint distances consistent [33]. Isomap is a freshly proposed technique for manifold learning and non-linear DR technique. Using the Euclidean distance, ISOMAP defines the interconnectivity of point of data utilizing its nearest neighbors in the complex dimensional space [35].

B. WORKING PRINCIPLE
This technique uses interpoint geodesic distances instead of finding euclidean distances. Encoding the structure for the space of input into distances [35]. These distances are calculated by establishing a sparse graph where every vertex gets connected to its neighboring closest vertex. This distance between every node pair is kept shortest and fed as the classical MOS input.

C. MERITS AND DEMERITS OF THE TECHNIQUE
Nonlinear transforms using Isomap particularly appear to be helpful in transformations to low dimensions [35]. Furthermore, the DR algorithm Isomap is robust and finds meaningful insights inside low-dimensional structures [36]. Among the various methods, Isomap is highly effective and widely used. The technique gives an easy method for finding the intrinsic geometry of a data manifold utilizing a rough estimate [37].
W. Baozhu [35] presented a method (ISO-MMI) that was used to overcome the shortcomings of traditional Isomap. It avoids the disadvantages of the linear transform algorithm, such as a high error rate and limited data. In addition, it settles the problems of Isomap, like getting the optimal objective transform function too complex and redundant.

KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA)
A. BRIEF INTRODUCTION
The KPCA is a valuable supplement of PCA utilizing methods based on kernel. While traditional DR methods like PCA and LDA are linear and incapable of reflecting the complex order interrelationships [38]. In contrast, manifold
learning techniques can obtain a more powerful and precise remodeling of non-linear manifolds.

B. WORKING PRINCIPLE
KPCA extends PCA over a kernel space. For example, for a given mapping: \(\phi: R^n \rightarrow F \) [38] via the given spatiality \(R^n \) to an infinite-dimension space called Hilbert space \(F \), the set may transform to a linearly separable space in \(F \). We theoretically implement PCA on \(F \) to obtain its non-linear distribution[38].

C. MERITS AND DEMERITS OF THE TECHNIQUE
The KPCA technique is robust in solving the compact size problem, and the data distribution is mapped from its input space \(R^n \) to its sample space \(R^m \) where \(m \) is 90 with 95% knowledge about covariance[38]. The KPCA algorithm maps the unaltered data onto an infinite-dimensional Hilbert Space through implicit space transformation [39]. The results will have linear properties, and the PCA procedure becomes compatible for extracting attributes hereafter. Considering the merits of the KPCA method in processing high-dimensional and complex data, it was used by [40] for intrusion detection alongside BP Neural nets.

UNIFORM MANIFOLD APPROXIMATION AND PROJECTION (UMAP)

A. BRIEF INTRODUCTION
L. McInnes, J. Healy, and J. Melville[41] introduced the UMAP technique. UMAPs have been a non-linear DR technique widely used for visualizations. It is also a general-purpose DR algorithm in applied machine learning without demarcation over computations on the embedding dimensions [42]. Moreover, it contains several useful features that include the transformation of new samples of data into a pretrained embedding space and using labels for supervised and semi-supervised DR.

B. WORKING PRINCIPLE
The technique mainly comprises a weighted, force-directed graph deployment into lower dimensionality.

The essential steps explained according to [43] include:
1. Given the set \(X = \{ x_i \}, i = 1 \ldots N \) data present in a high dimensions spatiality \(R^M \), find the sets \(\eta_i \), having k-neighbor points for every dataset point \(x_i \); \(i = 1 \ldots N \).
2. For each ‘i-th’ data point, find its neighbor nearest with the minimum distance.
 \(\rho_i = \min \{ d(x_i, x_j) \}; x_j \in \eta_i, d(x_i, x_j) > 0 \) [43]
3. Constructing the UMAP graph \(G \) as an undirected weighted graph with adjacency matrix:
 \(B = A + A^T - A \cdot A^T \) [43]
4. Following the data samples present in low dimension spatiality are given using the force-directed deployment of the graph using attractive \(F^a \) and repulsive \(F^r \).

C. MERITS AND DEMERITS OF THE TECHNIQUE
Within specific clusters, UMAP can determine local internal relationships while capturing global relationships betwixt the clusters [42]. This exclusive trait of UMAP makes it preferable to t-SNE in protecting structure elements of the data in complex dimensional topological space. Moreover, this feature is fruitful in the inference of gene relationships.

Another exciting discovery is that the refinement of classification for UMAP is similar for simple and complex dimensional output spaces as compared to the other techniques [43]. The UMAP technique is effective in 2D and 3D mappings without significant losses within the quality of classification. Following the results from [42], UMAP would perform stronger when accompanied by a linear reduction method.

T-SNE

A. BRIEF INTRODUCTION
T-SNE and UMAP are projection-based methods for DR. The t-SNE is perhaps a more commonly used reduction technique [42]. T-SNE aims at protecting and maintaining the local structures inside the embeddings while revealing the global information, like the existence of clusters at several scales [44]. T-SNE is mainly utilized for the visualization of complex data. Its application ranges from life sciences to deep-learning technique analytics.

B. WORKING PRINCIPLE
T-SNE learns from overall distances present in between the data samples in the complex dimension spatiality as symmetric joint-probability distribution ‘P’ [44]. Similarly, a distribution \(Q \) over joint-probability is computed, which depicts the low-dimensional similarity. The objective is to obtain a depiction embedding where \(Q \) depicts \(P \) in the simple dimensional space.

It can be obtained by improving the positions in the simple dimension spatiality to reduce the cost function \(C \) presented by the Kullback-Leibler (KL) divergence betwixt the distributions \(P \) and \(Q \) joint-probability:

\[
C(P, Q) = KL(P \| Q) = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} p_{ij} \ln \left(\frac{P_{ij}}{q_{ij}} \right) \quad [44]
\]

Where probability \(p_{ij} \) and \(q_{ij} \) depicts the likelihood of these data samples present in complex dimensional spatiality.

C. MERITS AND DEMERITS OF THE TECHNIQUE
This technique is a modification of neighbor stochastically generated embedding that is much effortless to optimize by
minimizing the propensity to crown points at the centroid of the map and producing outstandingly finer visualization [42]. All inclusively, UMAP and t-SNE results of prediction along with linear regression are commensurable, but refining time taken by UMAP is remarkably lesser to t-SNE, thus conserving the cost of the CPU and memory’s computation notably. (Refer Table-7) Also, [44] mentions that t-SNE is steerable computationally because the user defines the approximation level to specific, exciting areas.

<table>
<thead>
<tr>
<th>FAULT ANALYSIS</th>
<th>AVERAGE (%) FAULT WITH PCA</th>
<th>AVERAGE (%) FAULT WITHOUT PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMAP</td>
<td>14.39%</td>
<td>15.63%</td>
</tr>
<tr>
<td>t-SNE</td>
<td>15.11%</td>
<td>16.27%</td>
</tr>
</tbody>
</table>

Table 7: Comparison UMAP vs. T-SNE TIME ANALYSIS given by [42]

<table>
<thead>
<tr>
<th>SIZE OF SAMPLE</th>
<th>1200</th>
<th>2800</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMAP</td>
<td>4.7 sec</td>
<td>7.1 sec</td>
</tr>
<tr>
<td>t-SNE</td>
<td>14.8 sec</td>
<td>36.1 sec</td>
</tr>
</tbody>
</table>

FACTOR ANALYSIS (FA)

A. BRIEF INTRODUCTION

FA [45], [46] has been a technique for the linear DR of Gaussian random variables. It is in close relation to PCA [47], which extracts the subset space given by the most significant eigenvectors in the matrix of covariance. FA has many potential applications like segmental HMM[53] in speech recognition. Furthermore, in model adaptation [54], [55], [56], the parameters are recalculated to exact new testing conditions, presenting a more efficient and powerful substitute for full covariance matrices.

B. WORKING PRINCIPLE

To design the structural orientation of covariance of complex dimensional data, FA utilizes a small number of parameters [48]. For example, concerning automatic recognition of speech, the constraints are selected in two ways: i) by increasing the occurrence of signals of speech, or ii) by effectively reducing the number of fault occurrences of classification [49], [50].

FAs working definition is different from probabilistic PCA only in the distribution conditionality of the variable observed such that the latent variable has a covariance of diagonal rather than an isotropic one[58]. Moreover, FA converts multiple measured variables into a few unrelated comprehensive indicators[59]. So, FA can reduce dimensionality and simplify data [60].

C. MERITS AND DEMERITS OF THE TECHNIQUE

Although FA is closely related to PCA and does not suffer from two crucial disadvantages of PCA [48], viz :

i) Undefined a proper density model outside the subset spatiality of PCs.

ii) Discrepancies present componentwise excluding this subset spatiality that is uniformly modeled, even if the data does not permit such an assumption;

Factor analysis is not vulnerable to each of these demerits, although it does contain the classical PCA ([51], [52]) as a particular restricting case. Furthermore, in comparison with full covariance matrices, factored ones are simpler to exploit and more effective in overfitting [48]. Finally, the predictive performance of automatic recognition of speech is measured using speed, memory, and accuracy; fortunately, FA helps in all three aspects.

CONCLUSION

This paper reviews various DR techniques used to effectively reduce the high-dimensional features by getting a principal variable set. First, a brief introduction of various techniques used and how they were developed is provided. Additionally, the paper explicitly discusses the working phenomenon, pros, and cons of the techniques and their performance compared to their similar counterparts.

Performing the DR over the unaltered dataset is very crucial as it has the potential to alter the outcomes of a machine learning classifier. Dimensionally reduced data gives optimum classification results. Several linear and non-linear techniques are discussed in the paper. We observe that a hybrid system that utilizes two or more techniques (like PCA in combination with other techniques) generally has a lesser error percentage and, in most cases, outperforms a single standalone DR technique.

A dimensionally reduced dataset helps bring about data compression for storage, removal of redundant features and noise, and the non-essential features that negatively correlate with the predictive performance of a classification model. Future research towards developing more efficient hybrid DR techniques needs to be explored that help in optimizing the accuracy of prediction models and bring computational effectiveness to the results.

REFERENCES

L. Wang, “Research on Distributed Parallel Dimensionality Reduction

Wei Feng. Research on feature extraction and feature selection of hyperspectral remote sensing data [D]

D. Hongwei and W. Liang, “Research on Intrusion Detection Based on KPCA-BP Neural Network,” 2018 IEEE 18th International...

