Classification of Actors in an Animated Video using a Novel Yolo Framework in Comparison with SVM Algorithm

Srihari V¹, Magesh kumar S²

¹Research Scholar, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India, Pincode: 602105.
²Project Guide, Corresponding Author, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India, Pincode: 602105.

Abstract

Aim: The major goal of this study is Classification of actors in an animated video using the novel YOLO (You Only Look Once) framework in comparison with the SVM (Support Vector Machine) algorithm. Materials and Methods: Sample groups that are considered in the project can be classified into two, one for YOLO and other for SVM, which are tested using 0.80 for G-power to determine the sample size and for t-test analysis. Results and Discussion: The analysis of results show that the You Only Look Once has a high accuracy (87.45%) in comparison with the Support Vector Machine (84.74%). The statistical significance difference (two-tailed) is 0.001 (p<0.05). Conclusion: Novel YOLO framework seems to be better in classification of actors in an animated video over the SVM algorithm.

Keywords: Deep Learning, Face detection, Image Classification, Novel You Only Look Once (YOLO) framework, Supervised Learning, Support vector machine.

INTRODUCTION

Face recognition and identity systems have emerged as one of the most full-size disciplines of pc imaginative and prescient in recent years. As a preliminary level, the man or woman popularity machine includes face detection. Face detection era may be utilized in a range of industries, such as safety, biometrics, law enforcement, amusement, and personal safety, to permit actual-time monitoring and surveillance of persons(Li and Jain 2005)(Yangon, Gui, and Hu 2010). A person's Screen Time is the whole time of the film that contains the individual. It is crucial in evaluating the actor's salary and analyzing the gender bias in films(E.k., Varnima, and Ramachandran 2020).we employed You Only Look Once to apply picture classification concepts. The construction of the deep learning model to recognise and characterize articles based on recently cared for photographs is tied to grouping Both supervised and unsupervised learning approaches can be used to classify images.Supervised learning creates an array with values from 0 to 1(Brownlee 2019). These values are obtained by normalizing the pixel value of the image in the range 0-255. For accurate image classification, the model needs to understand the background, camera angle, focus, and lighting of the image. Camera light. For example, sharpness needs to be extracted by the model. Color, texture, shape histogram, number of pixels in the image created(Nixon and Aguado 2019).

There are around 8 IEEE papers and 25 google scholar papers have been published over the past 5 years. The most cited article is “Calculating screen time of Characters in a video using You Only Look Once algorithm” and “Face detection in real time video using you only look once algorithm”. In the existing research the major problem is identification of the videos and its characters with good accuracy and also the total calculating time accuracy is not good. Our project's primary goal is to Calculate Screen Time of an Actor in Video Using You only look once algorithm over Support Vector Machine.

Our institution is passionate about high quality evidence based research and has excelled in various fields (Parakh et al. 2020; Pham et al. 2021; Perumal, Antony, and Muthuramalingam 2021; Sathiyamoorthi et al. 2021; Devarajan et al. 2021; Dhanraj and Rajeshkumar 2021; Uganya, Radhika, and Vijayaraj 2021; Tesfaye Jule et al.
Srihari V, et al.: Classification of Actors in an Animated Video using a Novel Yolo Framework in Comparison with SVM Algorithm

2021; Nandhini, Ezhilarasan, and Rajeshkumar 2020; Kamath et al. 2020). Image categorization is used for many different things, including image processing, picture improvement, image restoration, image understanding, image recognition, and object recognition preparation. Face identification and image categorization are critical in many aspects of daily life. It is employed in many areas, including science and technology (Sonka, Hlavac, and Boyle 2012). Supervised Learning technology may be used to provide real-time monitoring and tracking of individuals in a range of businesses, including security, biometrics, law enforcement, escapism, and physical safety. Image classification can be used to identify anomalous border activity in military surveillance and automatically assess the lives of soldiers (Le and Li, n.d.). It can be used to understand different parts of the globe where human research is difficult. There are many ways to use image classification to calculate an actor's screen time, but this study used YOLO to get very accurate results (Zuo, Wang, and Fu 2016) with convolutional neural network to find the actor's screen time (Cheng 2020) (Lu, Zhang, and Xie 2020).

Materials and Methods

This study was conducted at SIMATS' Saveetha School of Engineering's Image Processing Lab. Essentially, two types of classifiers are employed: You Only Look Once and Support Vector Machine, which are used for Classification of Actors in an Animated Video. Group 1 is the You Only Look Once with a sample size of 24, and Group 2 is the Support Vector Machine with a sample size of 24, and these are compared for higher accuracy and precision score values to determine the best method. The minimum power analysis for G-power is 0.8, with a threshold of 0.05 percent and a maximum allowed error of 0.5.

Testing setup for this proposed system used a visual studio code. It is a software which is used for Classification of Actors in an Animated Video with the Novel YOLO Framework model and SVM. Hardware configuration for this proposed system is an Amd Ryzen 5 5th gen processor and requires 4GB RAM and 256GB SSD. The configuration of the system is Windows 10 operating system and python programming language 3.8.3. The sample size has been computed, and it has been determined that 24 samples/group, for a total of 48 samples, with a standard deviation of YOLO = .63324 and SVM = 1.87293, which are tested using 0.80 for G-power to determine the sample size and for t-test analysis.

Testing procedure for Classification of Actors in an Animated Video with Novel YOLO Framework

Step 1: Preprocessing
The preprocessing step is used to adjust your image to the model's specifications. Images with values ranging from 0 to 1 are used in some models.

Step 2: Feature Extraction
To extract the features from a video, feature extraction is employed.

Step 3: Training
After the feature extraction step, the training process is done. Training step involves Screen Dataset as input to the classifier to generate epochs.

Step 4: Test Classifier
In the test classifier is possible to import different and more datasets to test the accuracy of the classifier.

Step 5: Testing
Testing process is used to detect the Actors in an Animated Video. If the actor is present or not. In this step the classifier shows the result of how much time the actor is present.

You Only Look Once
The You Only Look Once algorithm is called YOLO in short. This algorithm can detect as well as recognise the object from the images which is an end to end neural network which makes the class probabilities and bounding boxes-predictions at once.

Algorithm:- Novel YOLO Framework
Input:- d:dataset, frames:video, X and y: variable
Get video_Capture(frames) //divide video into frames
for frames i to n
 n1 = plt.imread("+ i)
 X.append(n1) //Storing each image in X
X=np.array(X) //converting list into array
y = data.Class
/* Initialize the X array from each (224, 224) members of Δ(r, c)
for i <- 0 to 245 do
 for j <- 0 to 245 do
 (startR,startC) <- -(i*224,j*224);
Support Vector Machine

Novel Support Vector Machine is a supervised learning machine learning method that is commonly used in classification and regression issues. This Novel Support Vector Machine technique is employed for classification in this case. This algorithm will effectively work for classification problems by dividing the groups accordingly.

Algorithm: Support vector machine

Input: - d: dataset, frames: video, X and y and svc and Z: variable,

Get video_Capture(frames) //divide video into frames
for frames i to n
 n1 = plt.imread(" + i)
 X.append(n1) //Storing each image in X
X=np.array(X) //converting list into array
y = data.Class
svc = svm.SVC(kernel='linear',C=1).fit(X, y) //we create an instance of svm
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
h = (x_max / x_min)/100
X_train, X_test = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))
Z = svc.predict(np.c_[X_train.ravel(), X_test.ravel()])
Z = Z.reshape(xx.shape)
X_train,X_test,y_train,y_test,Z<-split features set and labels into train subset and test subset
history = model.fit(X_train, y_train, epochs=50)
V<-YOLO(X_train,y_train)
score_accuracy<-evaluate(i,y_test,V)
return score_accuracy.

The dataset started to start with separated into two parts: schooling and validation units. The set of rules is then examined at the schooling and validation statistics sets. The training and validation sets are modified five times depending on the dimensions of the statistics collection. Table 1 compares the accuracy of YOLO and SVM across 5 iterations. The various parameters for the analysis can be calculated as follows:

Equation (1) - Accuracy : It counts the number of cases successfully categorized.

\[
\text{Accuracy} = \frac{\text{True Positive} + \text{True Negative}}{\text{True Positive} + \text{True Negative} + \text{False Positive} + \text{False Negative}}
\]

The training and test sets are changed five times depending on the size of the testing dataset. Table 2 shows the time taken of characters present in the video for 5 iterations. The various parameters for the analysis can be calculated as follows:

Equation (2) - Screen Time : It shows the number of characters that were correctly presented.

\[
\text{Screen Time} = \frac{\text{Number of images predicted}}{\text{No of frames per sec}}
\]
Statistical Analysis
SPSS Statistics is a suite of statistical software developed by IBM. The independent sample T-test calculation for analyzing equal variable, standard error, and leven's test are evaluated. Attributes like 0 for Tom, 1 for Jerry, and 2 for others are the independent variables and Image_ID, Detection, and class are dependent variables. Independent sample T-test has been carried out for evaluating the accuracy.

Results

On 5 Tom and Jerry videos, the proposed methodology was tested. Table 1 displays the classification-count method findings for 5 videos. The use of the You Only Look Once Algorithm with the Support Vector Machine. The usage of Novel YOLO Framework Algorithm to deploy has shown to be successful. Accuracy in calculating the amount of time spent in front of the screen was assured. Characters. The screen time of characters can be used in a variety of ways, including assessing actor pay and analysing the Discrimination against Tom and Jerry based on their time. It is inferred that the mean time for T-test is far lesser than the comparison time. Moreover, the mean accuracy value of the base YOLO is around 87.45 which seems to be superior to the SVM around 84.74. The group statistics results are presented in Table 3 with mean and standard deviation. In Table 4, it was observed that the Levens test for equality of variance and its significance for YOLO is 16.968 and .001 respectively and standard error difference and confidence interval are lower than SVM. Mean accuracy and mean loss graph is depicted in Fig. 1. YOLO seems to appear better than SVM as depicted in Fig 2.

Discussion

Throughout this study, it was discovered that the Novel YOLO Framework technique appears to be more accurate than the usual way of the SVM algorithm for determining screen time. There are similar papers on Calculating screen time and classify the actor present in the video using deep learning algorithms. In this research paper the Traditional image processing methods are difficult to achieve in the near future due to environmental complexity such as sunlight reflections, and large differences in short-range and long-range target scales (Rajinikanth et al. 2021). In this research paper proposes a YOLOv2 algorithm that uses position and video recording to identify objects in an image. This task's main goal is to detect objects in an image. That is live detection using a webcam or video recorder. Because the GPU version is so quick, you may utilise the anchor box to complete the function precisely (Raskar and Shah 2021). The goal of this research article is to extract particular vehicle-type information from images or videos that feature cars. To address existing vehicle recognition issues such as absence of vehicle type detection, poor recognition accuracy, and sluggish speed, new vehicle recognition has been designed. A multi-layer feature fusion approach was used to increase the network's feature extraction capabilities, removing the recurrent convolutional layer in elevated networks (Zhang et al. 2018). In this research paper to recognize an object from the specified image. The proposed method for recognizing objects relates to feature vector reduction by kernel principal component analysis and recognition using a support vector machine classifier. Also in this article, the feature extraction method extracts features from the global descriptor of the image. The image feature extraction process extracts global features and forms them as feature vectors. Feature vectors are generated for the entire training image and dimensionality reduction is performed using KPCA (Yu, Chang, and Tsai 2021).

According to the data, the YOLO algorithm outperforms SVM in terms of outcomes and performance. As a result of the study's findings, both experimental and statistical analysis produce clarity in performance but it has some limitations. The limitation of the study constraints are scaled when face sizes are different and classifiers are run on each image. In such scenarios, the accuracy is not particularly high and can fail in unexpected ways. Another drawback of the method presented is that it requires the use of a GPU graphics card because the calculations are very complicated. The proposed strategy has only been tested on small films. Therefore, longer videos should be used in the future to evaluate the scalability and overall performance of the proposed methodology.

CONCLUSION
In this research the YOLO algorithm seems to appear with a better accuracy percentage (87.45%) than SVM (84.74%) improving facial recognition and calculating the screen time of an actor.

DECLARATION
Conflict of Interests
No conflict of interest in this manuscript.
Author Contribution
Author SH was involved in data collection, data analysis, and manuscript writing. Author SMK was involved in conceptualization, guidance, and critical review of manuscript.

Acknowledgments
The authors would like to express their gratitude towards Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Formerly known as Saveetha University) for offering the infrastructure to carry out this work successfully.

Funding: We thank the following organizations for providing financial support that enabled us to complete the study.
1. VBLP Tech Solution, Hyderabad.
2. Saveetha University
3. Saveetha Institute of Medical and Technical Sciences
4. Saveetha School of Engineering

REFERENCES

TABLES AND FIGURES
Table 1. Accuracy achieved during evaluation of Screen time of an actor using test and mapping dataset with YOLO algorithm and Comparison of SVM algorithm for different iterations.

<table>
<thead>
<tr>
<th>ITERATIONS</th>
<th>YOLO</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.43</td>
<td>86.87</td>
</tr>
<tr>
<td>2</td>
<td>88.41</td>
<td>86.54</td>
</tr>
<tr>
<td>3</td>
<td>87.67</td>
<td>86.65</td>
</tr>
<tr>
<td>4</td>
<td>87.54</td>
<td>86.98</td>
</tr>
</tbody>
</table>
Table 2. Screen time of Tom and Jerry calculated using the Classification count method.
Sample data sets with 283 images depicting the screen time of various videos. It consists of attributes like video no, Duration of videos, Screen time of tom, Screen time of Jerry.

<table>
<thead>
<tr>
<th>Video No.</th>
<th>Duration of Video</th>
<th>Screen Time of Tom</th>
<th>Screen Time of Jerry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 min 25 sec</td>
<td>276 sec</td>
<td>180 sec</td>
</tr>
<tr>
<td>2</td>
<td>9 min 10 sec</td>
<td>326 sec</td>
<td>129 sec</td>
</tr>
<tr>
<td>3</td>
<td>14 min 25 sec</td>
<td>600 sec</td>
<td>120 sec</td>
</tr>
<tr>
<td>4</td>
<td>8 min 45 sec</td>
<td>372 sec</td>
<td>147 sec</td>
</tr>
<tr>
<td>5</td>
<td>4 min 23 sec</td>
<td>135 sec</td>
<td>126 sec</td>
</tr>
</tbody>
</table>

Table 3. Consequences of institution records (imply of YOLO set of rules 87.45 seems to be more compared with SVM set of rules 84.74 and preferred blunders suggest for YOLO set of rules is .200 and SVM set of rules is .592). Descriptive SPSS employs the unbiased pattern test of Accuracy and Precision on the dataset. It defines identical variances with and without assuming a T-check rating of organizations with a reaction charge of ten in each case.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std error mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOLO</td>
<td>10</td>
<td>87.45</td>
<td>.63324</td>
<td>.20025</td>
</tr>
<tr>
<td>SVM</td>
<td>10</td>
<td>84.74</td>
<td>1.87293</td>
<td>.59227</td>
</tr>
</tbody>
</table>

Table 4. The dataset is subjected to the Independent Sample T-test, with the confidence interval set to 95% and the level of significance set to 0.010. (The You Only Look Once Algorithm looks to outperform the Support Vector Machine)
Srihari V, et al.: Classification of Actors in an Animated Video using a Novel Yolo Framework in Comparison with SVM Algorithm

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>Sig</th>
<th>t</th>
<th>df</th>
<th>sig(2 tailed)</th>
<th>Mean diff</th>
<th>Std.error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal Variances assumed</td>
<td>16.96</td>
<td>.00</td>
<td>4.31</td>
<td>18</td>
<td>.000</td>
<td>2.6950</td>
<td>.62521</td>
<td>1.3149</td>
<td>4.0085</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>4.31</td>
<td>1</td>
<td>11.03</td>
<td>1</td>
<td>.001</td>
<td>2.6950</td>
<td>.62521</td>
<td>1.3194</td>
<td>4.0706</td>
</tr>
</tbody>
</table>

Fig. 1. Loss and Epoch Comparison in Terms of Training and Validation Loss. Here Epochs start from 0 to 100. it explores the Loss YOLO slightly better than SVM. X-axis: Epochs, Y-axis: Loss.

Fig. 2. In phrases of mean accuracy, the simplest look as soon as the set of rules outperformed the aid Vector gadget by means of 87.4 factors. It investigates that the mean accuracy is relatively better than that of the support Vector gadget, and the usual deviation is notably decreased. The bar graph graphically represented the usage of group identification as X-axis YOLO versus SVM, Y-axis supplying the error bars with an average accuracy of detection +/-1 SD.