Antibiotic Sensitivity Pattern Of Bacterial Isolates In Chronic Osteomyelitis In A Tertiary Care Teaching Hospital Of North India.

Rohini Gupta1*, Akhil Kumar Gupta2, Sanjeev Gupta3

1Lecturer, Deptt. of Pharmacology & Therapeutics, Government Medical College, Jammu, J&K
2Senior resident, Deptt. of Orthopaedics, Government Medical College, Jammu, J&K
3Professor&Head, Deptt. of Orthopaedics, Government Medical College, Jammu, J&K

*Corresponding Author: Dr. Rohini Gupta

Deptt. of Pharmacology & Therapeutics, Government Medical College, Jammu (J&K) E.mail: rohinigupta299@gmail.com

DOI: 10.47750/pnr.2022.13.S08.459

Abstract

Background: Chronic Osteomyelitis is a debilitated disease and is characterized by persistent and prolonged infection of the bone and its management remained an increasing challenge to clinicians due to growing resistances to antibiotics.

Objective: The proposed study was conducted to ascertain the antibiotic sensitivity pattern of bacterial isolates in chronic osteomyelitis patients.

Materials and methods: This descriptive study was conducted for a period of six months from June to November 2021. A total of 80 samples of pus and other exudates were collected from all the patients ≥ 18 years of age with either gender and diagnosed with chronic osteomyelitis≥6 weeks duration. The samples were sent for microbiological examination and culture. Various organisms were identified by standard methods. Antibiotic sensitivity pattern of detected microorganisms was also analysed. Patients with other form of arthritis, implant related osteomyelitis and who had antibiotic usage in last one week were excluded from our study.

Results: Out of 80 patients, 73 (91%) showed growth of microorganisms whereas remaining 7 (9%) samples were sterile. The commonest bone affected in the study was tibia 53 (66.3%). Staphylococcus aureus was the most common bacteria isolated in 57 (78%) of patients. Maximum antibiotic sensitivity pattern was noted for vancomycin and clindamycin (˃90%) while maximum resistance was noted for penicillin in 22 (31%) of patients.

Conclusion: Our study will thereby guide the clinicians in choosing appropriate antibiotics which not only contribute to better treatment but the judicious use of such antibiotics will also help in preventing emergence of resistance to drugs, which are still sensitive.

Key words: Chronic Osteomyelitis, Antibiotic, Susceptibility, Resistance, culture sensitivity

INTRODUCTION

Chronic Osteomyelitis is a debilitated disease and is characterized by persistent and prolonged infection of the bone followed by low-grade inflammation, presence of sequestrum, involucrum and sinus tracks. Usually the infection is caused by blood borne organisms that are carried to the bone or sometimes by direct inoculation into the bone by open fracture or wound. Commonest pathogen responsible for chronic osteomyelitis remains Staphylococcus aureus while Methicillin resistant S.Aureus (MRSA) rates range from 10% to 59%.

Gram negative and polymicrobial infections were also commonly reported. Osteomyelitis can develop in any bone but long bones, vertebra and foot bone are frequently involved by the disease and in diagnosis of this condition radiographs prove to very useful.

A wide range of microorganisms that cause chronic osteomyelitis has been shown to develop resistance to commonly used antibiotics most probably due to empirical antibiotics that clinicians prescribe to their patients before the result of culture. Thus this condition presents complex therapeutic challenges and imposes a high cost on healthcare provision. In contrast to developed countries, in low-resource countries, chronic osteomyelitis is much more common. Inadequate health-care setting frequently combined with patient malnutrition makes chronic osteomyelitis long lasting and causing more severe disability.

The treatment of chronic osteomyelitis remains a challenge and multidisciplinary approach including adequate surgery and antibiotics are required. With the rapid development of antimicrobial resistance and expression of virulence factors regardless of patients’ immune status, the bacterial distribution, bacterial culture positive rate and antibiotic resistance pattern of osteomyelitis has changed gradually.
Due to increase in the incidence of chronic osteomyelitis the present study was planned to evaluate the changing trends of positive rate, causative organisms and antibiotic sensitivity patterns of these bacterial isolates in patients of chronic osteomyelitis. Moreover, there are no reports of such studies on the bacteriological profile of osteomyelitis in or around this region. Also due to the poverty and illiteracy prevailing in this region, there are more chances of acute osteomyelitis turning into chronic cases and presenting in the hospital. The present study was therefore undertaken to determine the bacteriological profile and antibiotic sensitivity pattern of these cases of osteomyelitis. This will go a long way in helping the clinicians in deciding upon the treatment regimen for these patients. The data generated by these studies will also help in formulating hospital antibiotic policies. This would help not only in eradicating the infections but would prevent development of resistance to the most commonly and relatively expensive antibiotics.

MATERIALS AND METHODS

It was a cross-sectional, prospective, observational study. The study was conducted in the department of pharmacology in collaboration with department of Orthopaedic Government Medical College, Jammu (J&K). The study was conducted for a period of six months from June 2021 to November 2021. Ethical approval was obtained from Institutional Ethics Committee (IEC) before commencement of the study. Patients of either gender with age 18 years and above with pain, swelling, fever, discharge and radiological evidence of osteomyelitis of long bones for more than six weeks duration were included in the study. Patients with other forms of arthritis, implant related osteomyelitis and who had antibiotic usage in last one week were excluded from our study. Samples like pus or exudates were taken from all the patients diagnosed with chronic osteomyelitis and sent for microbiological examination and culture. Various organisms were identified by standard methods. Antibiotic sensitivity pattern of detected microorganisms was also analysed. The data so obtained was analyzed using descriptive statistics.

RESULTS

A total of 80 cases of chronic osteomyelitis were studied to ascertain the bacteriological profile and their culture sensitivity pattern. Out of 80, 73(91%) showed growth of various organisms and remaining 7 (9%) showed no microbial growth as shown in Table I.

<table>
<thead>
<tr>
<th>Culture report</th>
<th>No. of samples studied</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture positive</td>
<td>73</td>
<td>91</td>
</tr>
<tr>
<td>Culture negative</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

The most common factor leading to chronic osteomyelitis was trauma in 44(55%) followed by immunocompromised state in 18 (22%) of patients as shown in Table II. Tibia was the most common bone affected in 34 (42.5%) followed by femur shaft as documented in 23 (29%) of cases as shown in Table III.

<table>
<thead>
<tr>
<th>Predisposing factor</th>
<th>No. of cases (n=80)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>Postoperative</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Orthopaedic implants</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Immunocompromise</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bones involved</th>
<th>No. of cases (n=80)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibia</td>
<td>34</td>
<td>42.5</td>
</tr>
<tr>
<td>Femur</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>Ulna</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Radius</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Humerus</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Staphylococcus aureus was the most common organism isolated in 46 (63%) of cases followed by Pseudomonas aeruginosa in 14 (19%) and Klebsiella in 6 (8.2%) as shown in Table IV. The antibiotic sensitivity and resistant reports are shown in Table V and it can be seen that from the various organisms isolated staphylococcus aureus which was the commonest organism isolated and was sensitive to Imipenem in 56(98%) of patients followed by Vancomycin and Linezolid in 55 (96%).
DISCUSSION

Osteomyelitis is one of the major chronic diseases amongst people in developing countries like India, due to emerging rise in the drug resistant bacterial strains that not merely complicates the treatment but also lead to increase in the use of surgical debridement in such cases. Because chronic osteomyelitis require antibiotic therapy for months to years, therefore chronic osteomyelitis is one of the major financial burden and substantially affects quality of life. Hence, area wise studies on bacteriological profiles and monitoring of antibiotic susceptibility pattern needs to be carried out in individual setting, which would guide to develop a policy on appropriate use of antibiotics.

In the present study, out of 80 samples, 73(91%) showed growth of microorganisms whereas 7 (9%) of samples were culture negative. This is consistent with the findings of the study done by Wadekar DM et al. Various factors play a crucial role in establishing a microbial culture to come as positive or negative. Collection of specimen before the administration of antibiotic, use of proper transport media, incubation and other laboratory conditions play an important role in the incidence of positive culture. Failure to incubate anaerobic cultures for sufficient time might also have contributed to the culture negative rate. Although all kinds of organisms including bacteria, viruses, parasites, fungi and tuberculosis may cause osteomyelitis, bone infection was mainly caused by pyogenic bacteria and mycobacteria. So, one of the reasons of culture negative specimens may be because of the tuberculosis and fungal infection which should require further investigations using specialized techniques.

In our study, the most common factor leading to osteomyelitis was trauma in 44(55%) of cases followed by immunocompromised state in 18(22%) and post-operative osteomyelitis in 12 (15%) of cases. These findings are similar to other studies. The patients with post- traumatic osteomyelitis require repeated surgeries and long time usage of different antimicrobial agents which may lead to increase in the incidence of bacterial resistance strains. In our study, tibia was the main bone affected in 34(42.5%) of cases followed by femur in 23(29%) of cases. This is similar to the findings of Kaur J et al.

In the present study, staphylococcus aureus was the commonest bacteria isolated from 46 (63%) of specimens followed by Staphylococcus epidermidis as positive or negative. Collection of specimen before the administration of antibiotic, use of proper transport media, incubation and other laboratory conditions play an important role in the incidence of positive culture.

In our study, Staphylococcus aureus which was the commonest organism isolated was sensitive to imipenem in 56(98%) of patients followed by Vancomycin and Linezolid in 55 (96%) of patients. These findings are similar to Khalid et al. Many of the bacterial isolates like Staph.aureus, E.coli showed resistance to penicillins in maximum of wounds, dressings, linen, clothes and even hands during perineal hygiene plays a major role in increasing chances of transmission of infection.
number. This may be because of indiscriminate use of these antibiotics even prior to culture sensitivity for the last many years. Infection of multidrug resistant bacteria presents a serious clinical challenge for physicians in healthcare setting. Treatment options for these infections are limited and the use of inappropriate empirical antibiotic therapy or delayed appropriate antibiotic therapy can lead to worse outcomes. The study suffers from few limitations of being less duration, decreased sample size and single centric. Further studies are therefore, recommended to address these limitations.

CONCLUSION
The presented antibiotic susceptibility pattern in chronic osteomyelitis with very high rate of resistance to penicillin group of antibiotics is alarming. Therefore, it needs updation of antibiotic therapy guidelines. Our study will thereby guide the clinicians in choosing appropriate antibiotics which not only contribute to better treatment but the judicious use of such antibiotics will also help in preventing emergence of resistance to drugs, which are still sensitive. It is therefore, important to undertake studies to see the antibiotic sensitivity pattern in a particular geographical area that will not only enable appropriate selection of antibiotics but would also limit the drug-resistant strains in the future to treat the disease successfully.

CONFLICT OF INTEREST:
There is no conflict of interest.

REFERENCES